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Abstract. Bond animals with a constraint of a given winding direction, on the square lattice, 
are enumerated up to 14 bonds. Numerical evidence further confirms our previous conjec- 
ture using the position space renormalisation group approach, that they belong to a new 
universality class. 

1. Introduction 

Recently there has been considerable interest in the study of various models simulating 
polymers, particularly the study of their critical behaviours using these models. 

One of the most important and attractive subjects is the role of the macroscopic 
symmetry of the modelled system in the aggregation phenomena. 

Now it is well accepted that the dimensionality, the number of interior degrees of 
freedom as well as the macroscopic symmetry of the system determine simultaneously 
the critical behaviours. As for the last factor, one can list examples such as the difference 
between the critical phenomenon taking place on the surface or interface and the 
corresponding one in the bulk (see e.g. a review by Binder 1983); the novel behaviour 
of aggregation happening on the directed lattice etc (e.g. directed percolation (Redner 
1982), directed lattice animal (see e.g. Redner and Yang 1982, Dhar et a1 1982, Dhar 
1982) and the directed SAW (Redner and Majid 1983)). 

It is obvious that the study of the system with reduced macroscopic symmetry is 
generally more difficult, but also rather peculiar and fascinating. 

In this paper bond animals 'with a novel macroscopic symmetry, the spiral bond 
animal, proposed and studied by one of the present authors (Li 1984) using the position 
space renormalisation group (PSRG) approach, are exactly enumerated up to 14 bonds. 
Our exponent estimates further confirm the previous conjecture of a new universality 
class for the spiral bond animal (Li 1984) after comparing the exponents with those 
for unrestricted lattice animals. 

2. Series expansion of the generating function, and the analysis of the mean-square 
size 

In a previous paper (Li 1984) we defined a spiral bond animal as follows: A set of 
bonds d such that each bond a E d is passable by and only by at least one spiral path 
(say clockwise path or paths) starting from a given fixed point (the origin) such that 
all bonds lying on the path (or paths) are in d. (An example of a spiral bond animal 
is given in figure 1 illustrating this definition.) Briefly, a spiral bond animal is a 
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Figure 1. An example of spiral bond animals (with ten bonds). 

connected bond cluster with a given winding direction constraint. Note that there 
exists a special site, the rotational centre, similar to the starting point of the directed 
lattice animal, while every site in the isotropic lattice animal is equivalent. The 
generating function G(x)  is defined in the usual way as the sum of the weights of all 
spiral bond animals; the weight of an animal of size N being X N  

where CN is the number of spiral animals of size N. Here we confine ourselves to the 
study of the ‘random spiral animal’ limit, as well as to the case without loops, i.e. 
spiral trees, for simplicity. 

The starting point for the series expansion is the exact enumeration for CN, the 
number of N-bond spiral animals on the lattice. We assume the following conventional 
asymptotic relations for large N for the spiral bond animal 

C N  - N-’A N ,  (2) 

P N  - N2”, (3)  

where CN = 1 and p N  = Z,,,,, p,,/Z,,,, 1, { w N }  and pw, are the distinguished 
N-bond animals and square end-to-end distance respectively. We then define the 
growth parameter series through the successive ratio 

A N  CNICN-I ,  (4) 

V N  E ~ N ( P N + I / P N -  1 ) -  ~ ( 1  + o ( N - ’ ) ) .  

and the correlation-length exponent series 

( 5 )  

In table 1, we give the C”S, C N P N ’ S  and their corresponding successive ratios AN’S 

and V ~ ’ S  for the square lattice up to N = 14 (also shown in figures 2 and 3). 
In addition to the previous ratio method, which was proposed by the present authors 

and has been extensively and successfully applied to ‘trials’ (Zhou and Li 1984a) and 
some other lattice models (Li and Zhou 1984b) an alternative method based on Stoltz’s 
theorem (see, for example, Hobson 1926) is also used to study spiral bond animals. 
Stolz’s theorem is as follows. 

If the following conditions are fulfilled for the two sequences { X N }  and { Y N } :  

lim X N = + m  and lim YN=+m,  
N-,X N-ca 

y N + I >  Y N ;  
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Figure 2. C N / C N - ,  against I/N plot for square Figure 3. The successive ratios for the correlation- 
lattice, the superscript 'st' denotes the results length exponents Y as a function of I /  N for a square 
obtained using the average method on the basis of lattice. 
Stolz's theorem. 

then we have limN+m XN/ YN = A, if the following limit exists 

lim (X, -XN-l) / (  YN - Y N - , )  = A .  
N-m 

We define the sequences {X,} and { Y N }  by 

N N-l  

Y N =  C C m ,  CO= 1 
m=O 

XN= C Cm, 
m=O 

(for which the conditions of Stolz's theorem are obviously fulfilled), where C, = Z.(w,} 1, 
{ w,} the distinguished m-bond configurations obtained by exact enumeration in the 
lattice model: then we have limN+m X N /  Y,  = lim,+m AS' = A, if the following limit 
exists: l imN+m C N /  CN-I = limN+m A N  = A, according to Stolz's theorem. Not only has 
one the equality of the limits for the sequences {A,} and {A$}, but we can also show 
that they have the same asymptotic behaviours (Zhou and Li 1984a) if one assumes 
some conventional behaviours asymptotically like C, = 2{.%} 1 - A "-' and p N  = 
E,,,} pW,/Z{,,,,} 1 -AN2",  in which pw, is the square end-to-end distance: A, 8 and v 
are respectively the corresponding location and exponents describing the nature of 
singularity in the related lattice model. Thus one has 

(6)'  

( 5 ) '  

* s t l  = 
N - XN/XN- l  = A (  1 - 8 / N + 0 (  1/N2)) 

vst l  - N+I 
N = T { [ ( X m = o  Cm~m/X~+l ) / (~Z=o  Cmpm/xN)I- ~ ( 1  + o ( ~ / N ) )  

and 
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The expressions for the previous ratio method are ( 5 ) ,  and 

A N  = c N / c N - ,  = ~ ( i  - e /N+o( i /N*) )  ( 6 )  

as well as 

eN = ~ ( i - A , / h ‘ )  (7) 
according to (2) and (4), where A ‘  is the estimated value of the A’s. We have 
applied extensively this extended method to some typical lattice models (Zhou and Li 
1984a, b, Li and Zhou 1984). We find that almost in every case studied, the results 
are comparable to (or often better than) those obtained by the previous ratio method. 
The sequence provided in the Neville table by the extended ratio method often appears 
to converge more rapidly and more steadily. One can even extend the Neville table 
to higher order. 

The results based on Stolz’s theorem are listed in the last two columns in table 1 
and marked by the superscript ‘st’. 

From figure 2, we find the reasonably convergent results for AN’S and Az’s as follows 

A - 2.67 * 0.01, (8) 

A”’-2.67*0.01. (9) 

The linear projections are used to refine the results for the AN’S and vN’s. The linear 
projections and their means are defined as follows 

(10) 

(11) 

A - 2.662 * 0.006, (12) 

v - 0.577 * 0.0 1, (13) 

-e-  i.i9*0.03, (14) 

X ( n ,  m ;  e )  = l / ( n  - m ) ( ( n  + e ) X ,  -(m+ e ) X , )  

x ( n ,  m ;  e )  = ( X ( n ,  m ;  e ) + X ( n  - 1, m - 1 ; e)) /2  

O s e s 0 . 5 ,  

Os e s 0 . 5 .  

Their values are listed in table 2. From table 2, we get the growth parameter 

Table 1. The spiral bond animal problem on square lattice, C ,  and pN are the number 
and the mean-square end-to-end distance of N-bond spiral bond animals respectively. 

~ 

A s t l  y l t l  
N c, C N P N  A,\$(’ CNICN- , )  v,w h h’ 

1 4 4 
2 14 30 3.5 0.6139 4.5 0.6043 
3 48 166 3.428 57 0.5195 3.6667 0.5666 
4 157 73 1 3.270 83 0.5296 3.3788 0.5692 
5 504 2968 3.210 19 0.5375 3.2601 0.57 I4 
6 1574 1 1  262 3.123 02 0.5335 3.1621 0.5677 
7 4848 40 856 3.080 05 0.5320 3.1069 0.5628 
8 14698 142 694 3.031 76 0.5335 3.0557 0.5610 
9 44 060 484 804 2.997 69 0.5359 3.0167 0.5605 

10 130 732 1609 776 2.967 14 0.5386 2.9836 0.5610 
11 384 620 5246 222 2.942 05 0.5421 2.9560 0.5625 
12 1122 874 16 825 491 2.919 44 0.5442 2.9318 0.5636 
13 3257 368 53 232 994 2.900 74 0.5471 2.91 13 0.5652 
14 9392 764 166 430 904 2.883 72 2.8932 
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Table 2. The mean values (see (1  I ) )  of the linear projections of A,'s and vN's ,  marked 
by x', and C', respectively. The last four columns are the critical exponents ON for two 
testing A's, where -ON = N ( A , / A ' -  I ) .  

y s 1 I  N x', N C& - eN(  A'= 2.662) - e N ( A ' =  2.666) -e$(~ '=2 .662)  -e$ ( A '  = 2.666) 1"" 

7 
8 
9 

10 
1 1  
12 
13 
14 
- 

2.7547 
2.7580 
2.7094 
2.7086 
2.69 17 
2.68 10 
2.6736 
2.6694 

2.7240 
2.7286 
2.7012 
2.6942 
2.6825 
2.6729 
2.6658 
2.6617 

I .0993 I .0872 1.1675 
0.5183 0.5413 1.1113 1.0976 1.1831 
0.5336 0.5404 1.1349 1.1197 1.1991 
0.5494 0.5521 1.1463 1.1296 1.2079 
0.5591 0.5617 1.1572 1.1390 1.2149 
0.5699 0.5719 1.1605 1.1408 1.2162 
0.5720 0.5766 1.1659 1.1446 1.2176 
0.5752 0.5801 1.1661 1.4333 1.2160 

1.1553 
1.1693 
1.1838 
1.1911 
1.1966 
1.1964 
1.1963 
1.1932 

and the fractal dimensionality 

d f =  1/ U - 1.70. (15) 

Also the seuqences of Neville table of A's and U ' S  for the 'spiral bond animals are 
respectively the following 

A t '  = 2.8932, Ai" =2.6617, A Y 1  = 2.6337, A Y '  = 2.6381, 

A:' = 2.6528, A Y '  = 2.6610, A:' = 2.6641, A;" = 2.6641, 

vit2 = 0.5402, p I - -0.5522, vf = 0.5723, U;" = 0.5836, 

vy2 = 0.585 1, v:t2 = 0.5823, v:t2 = 0.5809, = 0.58 19 

and vi t2= 0.5804. The above sequences in the Neville table are for N = 14, and the 
subscripts denote the order in the Neville table. 

Since the microscopic constraint causes a new macroscopic symmetry, which is 
essentially different from those either for the isotropic lattice or the directed one, thus 
one has reason to expect the possibilty of a new universality class for the spiral bond 
animal. 

When the functionalityf= 2, the allowed maximum number of bonds at any linked 
point, the spiral bond animal reduces to the spiral SAWS; this was proposed by Privman 
(1983), and has attracted much attention very recently (Blote and Hilhorst 1984, 
Whittington 1984, Redner and de Arcanagelis 1984, Klein et a1 1984, Guttmann and 
Wormald 1984). According to their results, the asymptotic form for the number of 
spiral SAWS is now known rigorously, and a new universality class as well as an essential 
singularity have been identified. 

Since our reasonably convergent A is far from 1, thus one can exclude the possibility 
with the singular form of C, - (constant)JN, suggested by Redner and de Arcanagelis 
(1984) and has been proved and improved on a sound basis in the very recent works 
mentioned above ( CN - 2-23-5/4nN-7/4 exp(2&N)'")) for spiral SAWS. 

There has been a rather wide range of estimates of U for the lattice animal (for a 
review, see Stanley et a1 1982), from 0.61-0.65. Perhaps the value of 0.6408 * 0.003 by 
the phenomenological RG approach (Derrida and de Seze 1982) is the preferenble one. 
Our estimate of v is well away from those for the usual ZD lattice animal and the spiral 
SAW. Although the estimate of 8 here is rather crude, however, it is worth noticing 
that the 8 for the spiral bond animal has an opposite sign compared with that for the 
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unrestricted 2~ lattice animals. This essentially different behaviour comes from the 
opposite sign of slopes in the A N  - 1/N plots for the restricted and unrestricted lattice 
animals, and is independent of any detailed numerical estimations for A’s. We think 
the above facts further confirm our previous conjecture of the new universality class 
for the spiral bond animal (Li 1984). 
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